Publications by authors named "K Ckless"

The rapid expansion of medical nanotechnology has significantly broadened the potential applications of cellulose nanocrystals (CNCs). While CNCs were initially developed for drug delivery, they are now being investigated for a range of advanced biomedical applications. As these applications evolve, it becomes crucial to understand the physicochemical behavior of CNCs in biologically relevant media to optimize their design and ensure biocompatibility.

View Article and Find Full Text PDF

Cellulose nanocrystals (CNCs) display remarkable strength and physicochemical properties with significant potential applications. To better understand the potential adjuvanticity of a nanomaterial, it is important to investigate the extent of the immunological response, the mechanisms by which they elicit this response, and how this response is associated with their physicochemical characteristics. In this study, we investigated the potential mechanisms of immunomodulation and redox activity of two chemically related cationic CNC derivatives (CNC-METAC-1B and CNC-METAC-2B), using human peripheral blood mononuclear cells and mouse macrophage cells (J774A.

View Article and Find Full Text PDF

Interest in cellulose-based nanomaterials has continued to increase dramatically in the past few years, especially with advances in the production routes of nanocellulose-such as cellulose nanocrystals (CNC), cellulose nanofibrils (CNF) and bacterial nanocellulose (BNC)-that tailor their performances [...

View Article and Find Full Text PDF

An emerging interest regarding nanoparticles (NPs) concerns their potential immunomodulatory and pro-inflammatory activities, as well as their impact in the circulatory system. These biological activities of NPs can be related to the intensity and type of the responses, which can raise concerns about adverse side effects and limit the biomedical applicability of these nanomaterials. Therefore, the purpose of this study was to investigate the impact of a library of cationic cellulose nanocrystals (CNCs) in the human blood and endothelial cells using cell-based assays.

View Article and Find Full Text PDF

Polysaccharides have been shown to have immunomodulatory properties. Modulation of the immune system plays a crucial role in physiological processes as well as in the treatment and/or prevention of autoimmune and infectious diseases. Cellulose nanocrystals (CNCs) are derived from cellulose, the most abundant polysaccharide on the earth.

View Article and Find Full Text PDF