Publications by authors named "K Cante-Barrett"

The curative benefits of autologous and allogeneic transplantation of hematopoietic stem cells (HSCs) have been proven in various diseases. However, the low number of true HSCs that can be collected from patients and the subsequent in vitro maintenance and expansion of true HSCs for genetic correction remains challenging. Addressing this issue, we here focused on optimizing culture conditions to improve ex vivo expansion of true HSCs for gene therapy purposes.

View Article and Find Full Text PDF

Hematopoietic stem cell (HSC) transplantation has been the golden standard for many hematological disorders. However, the number of HSCs obtained from several sources, including umbilical cord blood (UCB), often is insufficient for transplantation. For decades, maintaining or even expanding HSCs for therapeutic purposes has been a "holy grail" in stem cell biology.

View Article and Find Full Text PDF
Article Synopsis
  • - Flow cytometry is a key technique for studying immune cells at the single-cell level, mainly analyzing surface markers and, with certain antibodies, intracellular proteins.
  • - Single-cell RNA-sequencing has revolutionized our ability to explore immune development, allowing for detailed mapping of diverse tissues and rare cell populations.
  • - Combining RNA data with protein analysis at a single-cell level enhances our understanding of immune system complexity and cell diversity, showcasing how different types of biological data can interact.
View Article and Find Full Text PDF

T cell development in the mouse thymus has been studied extensively, but less is known regarding T cell development in the human thymus. We used a combination of single-cell techniques and functional assays to perform deep immune profiling of human T cell development, focusing on the initial stages of prelineage commitment. We identified three thymus-seeding progenitor populations that also have counterparts in the bone marrow.

View Article and Find Full Text PDF

The ex vivo expansion and maintenance of long-term hematopoietic stem cells (LT-HSC) is crucial for stem cell-based gene therapy. A combination of stem cell factor (SCF), thrombopoietin (TPO), FLT3 ligand (FLT3) and interleukin 3 (IL3) cytokines has been commonly used in clinical settings for the expansion of CD34 from different sources, prior to transplantation. To assess the effect of IL3 on repopulating capacity of cultured CD34 cells, we employed the commonly used combination of STF, TPO and FILT3 with or without IL3.

View Article and Find Full Text PDF