Publications by authors named "K C Zawalich"

The secretion of insulin from the pancreatic beta-cell must be commensurate to satisfy the insulin requirements of the organism. This cell has a great flexibility to meet these requirements which are increased not only by the ingestion of nutrients (increase of plasma glucose) but also by the sensitivity of target tissues to insulin as well. The insulin secretion is a complex biochemical event regulated by a host of potential second messenger molecules acting alone or in concert.

View Article and Find Full Text PDF

Incubation in 100 micromol/L fatty acid-free bovine serum albumin (FAF-BSA) significantly amplifies insulin secretion from isolated, perifused rat islets. When compared with the responses of control islets incubated in 100 micromol/L radioimmunoassay-grade BSA, insulin secretion rates were increased 2- to 3-fold when these islets were stimulated with 10 mmol/L glucose alone or with the combination of 10 mmol/L glucose, 15 mmol/L KCl, and 100 micromol/L diazoxide. These amplified secretory responses were paralleled by significant increases in the phospholipase C (PLC) activation monitored by fractional increases in (3)H-inositol efflux from these same islets.

View Article and Find Full Text PDF

In the present report, we compared the insulin secretory responses of freshly isolated, perifused rat and mouse islets to glucose. Prestimulatory glucose levels were changed to assess their influence on the subsequent secretory responses. Additional studies included experiments with the incretin factor glucagon-like peptide-1 (GLP-1), the cholinergic agonist carbachol, and the alpha2 agonist epinephrine.

View Article and Find Full Text PDF

The impact of the catecholamine epinephrine and the postulated inhibitory second messenger prostaglandin E(2) (PGE(2)) on the kinetics and magnitude of glucose-induced insulin secretion were compared and contrasted. In agreement with a number of studies, epinephrine was a most effective antagonist of glucose-induced insulin secretion. Dose-response studies using 8 to 10 mmol/L glucose as stimulant established that levels as low as 1 to 10 nmol/L of the catecholamine were effective at inhibiting release.

View Article and Find Full Text PDF

The impact of modest but prolonged (3 h) exposure to high physiological glucose concentrations and hyperkalemia on the insulin secretory and phospholipase C (PLC) responses of rat pancreatic islets was determined. In acute studies, glucose (5-20 mM) caused a dose-dependent increase in secretion with maximal release rates 25-fold above basal secretion. When measured after 3 h of exposure to 5-10 mM glucose, subsequent stimulation of islets with 10-20 mM glucose during a dynamic perifusion resulted in dose-dependent decrements in secretion and PLC activation.

View Article and Find Full Text PDF