Publications by authors named "K C Umapathy"

Electrochemical water splitting required efficient electrocatalysts to produce clean hydrogen fuel. Here, we adopted greenway coprecipitation (GC) method to synthesize conducting polymer (CP) nanotunnel network affixed with luminal-abluminal CoNi hydroxides (GC-CoNiCP), namely, GC-CoNiCP, GC-CoNiCP, and GC-CoNiCP. The active catalyst, GC-CoNiCP/GC, has low oxygen evolution reaction (OER) overpotential (307 mV) and a smaller Tafel slope (47 mV dec) than IrO (125 mV dec).

View Article and Find Full Text PDF

Sympathetic hyperactivity via spatially dense adrenergic stimulation may create pro-arrhythmic substrates even without structural remodelling. However, the effect of sympathetic hyperactivity on arrhythmic activity, such as rotors, is unknown. Using simulations, we examined the effects of gradually increasing the spatial density of adrenergic stimulation (AS) in atrial sheets on rotors.

View Article and Find Full Text PDF

Background: As the global community begins recovering from the COVID-19 pandemic, the challenges due to its aftermath remain. This health crisis has highlighted challenges associated with airborne pathogens and their capacity for rapid transmission. While many solutions have emerged to tackle this challenge, very few devices exist that are inexpensive, easy to manufacture, and versatile enough for various settings.

View Article and Find Full Text PDF

Electrochemical water splitting (EWS) is a promising way to attain H, which has been deemed an ideal substitution for fossil fuels because of renewable and eco-friendly benefits. Developing an amorphous-based simple and structurally flexible non-noble catalyst to offer high performance for commercial applications has become a current interest. Amorphous cobalt-anchored nitrogen-doped carbon nanoparticles (Co@NC-NPs) were designed to have a low overpotential and Tafel as a bifunctional electrocatalyst (HER - 142 mV/80 mV dec and OER - 250 mV/72 mV dec) to achieve 10 mA cm in 1.

View Article and Find Full Text PDF

Water electrolysis is a key factor to generate mobile and sustainable energy sources for H production. Cobalt-based Prussian Blue analogues encompassed with polymer support electrocatalysts CoPBA@PANI (CoPBA@PANI-100, CoPBA@PANI-200, and CoPBA@PANI-300) have been synthesized and characterized. The well-designed CoPBA@PANI-200/GC shows a low overpotential (η) of 301 mV with a small Tafel slope (56 mV dec), comapred to that of IrO (348 mV ; 98 mV dec) for OER.

View Article and Find Full Text PDF