Publications by authors named "K C S Roballo"

Peripheral nerve injury has become an increasingly prevalent clinical concern, causing great morbidity in the community. Although there have been significant advancements in the treatment of peripheral nerve damage in recent years, the issue of long-term nerve regeneration remains. Furthermore, Wallerian degeneration has created an obstacle to long-term nerve regeneration.

View Article and Find Full Text PDF

Background: Blast-induced spinal cord injury (bSCI) is prevalent among military populations and frequently leads to irreversible spinal cord tissue damage that manifests as sensorimotor and autonomic nervous system dysfunction. Clinical recovery from bSCI has been proven to be multifactorial, as it is heavily dependent on the function of numerous cell populations in the tissue environment, as well as extensive ongoing inflammatory processes. This varied recovery process is thought to be due to irreversible spinal cord damage after 72 hours post-injury.

View Article and Find Full Text PDF

Peripheral Nerve Injuries (PNI) affect more than 20 million Americans and severely impact quality of life by causing long-term disability. PNI is characterized by nerve degeneration distal to the site of nerve injury resulting in long periods of skeletal muscle denervation. During this period, muscle fibers atrophy and frequently become incapable of "accepting" innervation because of the slow speed of axon regeneration post injury.

View Article and Find Full Text PDF
Article Synopsis
  • Peripheral Nerve Injuries (PNI) affect over 20 million Americans, leading to long-term disability and muscle atrophy due to slow nerve regeneration.
  • Researchers hypothesize that reprogramming muscle to an embryonic-like state using NANOG can enhance its ability to recover after PNI.
  • In their study, NANOG expression in a mouse model significantly improved muscle regeneration and motor function compared to normal mice, indicating that this reprogramming approach could be beneficial for treating PNI.
View Article and Find Full Text PDF

The regenerative therapies with stem cells (SC) has been increased by the cryopreservation, permitting cell storage for extended periods. However, the permeating cryoprotectant agents (CPAs) such as dimethylsulfoxide (DMSO) can cause severe adverse effects. Therefore, this study evaluated equine mesenchymal stem cells derived from adipose tissue (eAT-MSCs) in fresh (Control) or after slow freezing (SF) in different freezing solutions (FS).

View Article and Find Full Text PDF