Publications by authors named "K C Chapalamadugu"

Diabetes is associated with increased cardiac injury and sudden death. Nicotinamide phosphoribosyltransferase (Nampt) is an essential enzyme for the NAD salvage pathway and is dysregulated in diabetes. Nampt activation results in rescued NADH/NAD ratios and provides pharmacological changes necessary for diabetic cardioprotection.

View Article and Find Full Text PDF

Background: Nicotinamide phosphoribosyltransferase (Nampt), a key enzyme in NAD salvage pathway is decreased in metabolic diseases, and its precise role in skeletal muscle function is not known. We tested the hypothesis, Nampt activation by P7C3 (3,6-dibromo-α-[(phenylamino)methyl]-9H-carbazol-9-ethanol) ameliorates diabetes and muscle function.

Methods: We assessed the functional, morphometric, biochemical, and molecular effects of P7C3 treatment in skeletal muscle of type 2 diabetic (db/db) mice.

View Article and Find Full Text PDF

Voltage-gated potassium (Kv) channels control myocardial repolarization. Pore-forming Kvα proteins associate with intracellular Kvβ subunits, which bind pyridine nucleotides with high affinity and differentially regulate channel trafficking, plasmalemmal localization and gating properties. Nevertheless, it is unclear how Kvβ subunits regulate myocardial K currents and repolarization.

View Article and Find Full Text PDF

Glucocorticoids are utilized for their anti-inflammatory properties in the skeletal muscle and arthritis. However, the major drawback of use of glucocorticoids is that it leads to senescence and toxicity. Therefore, based on the idea that decreasing particle size allows for increased surface area and bioavailability of the drug, in the present study, we hypothesized that nanodelivery of dexamethasone will offer increased efficacy and decreased toxicity.

View Article and Find Full Text PDF

Aim: Potassium channel accessory subunits (Kvβ) play a key role in cardiac electrical activity through ion channel modulation. In this study, we hypothesize that Kvβ2 regulates skeletal muscle growth and fibre phenotype via protein-protein interactions.

Methods: Kvβ2 knockout mouse model was used for morphometric, immunohistochemical and biochemical analysis to evaluate the role of Kvβ2 in skeletal muscle physiology.

View Article and Find Full Text PDF