Cancer is a disease that arises from the uncontrolled growth of abnormal (tumor) cells in an organ and their subsequent spread into other parts of the body. If tumor cells spread to surrounding tissues or other organs, then the disease is life-threatening due to limited treatment options. This work applies an agent-based model to investigate the effect of intra-tumoral communication on tumor progression, plasticity, and invasion, with results suggesting that cell-cell and cell-extracellular matrix (ECM) interactions affect tumor cell behavior.
View Article and Find Full Text PDFCardiac digital twins are computational tools capturing key functional and anatomical characteristics of patient hearts for investigating disease phenotypes and predicting responses to therapy. When paired with large-scale computational resources and large clinical datasets, digital twin technology can enable virtual clinical trials on virtual cohorts to fast-track therapy development. Here, we present an open-source automated pipeline for personalising ventricular electrophysiological function based on routinely acquired magnetic resonance imaging (MRI) data and the standard 12-lead electrocardiogram (ECG).
View Article and Find Full Text PDFWe present a resonant-mode, transverse-field, radio-frequency (rf) neutron spin flipper design that uses high-temperature superconducting films to ensure sharp transitions between uniform magnetic field regions. Resonant mode allows for low-power, high-frequency operation but requires strict homogeneity of the magnetic fields inside the device. This design was found to efficiently flip neutrons at 96.
View Article and Find Full Text PDFFibrosis, a pathological increase in extracellular matrix proteins, is a significant health issue that hinders the function of many organs in the body, in some cases fatally. In the heart, fibrosis impacts on electrical propagation in a complex and poorly predictable fashion, potentially serving as a substrate for dangerous arrhythmias. Individual risk depends on the spatial manifestation of fibrotic tissue, and learning the spatial arrangement on the fine scale in order to predict these impacts still relies upon invasive ex vivo procedures.
View Article and Find Full Text PDFCardiac in silico clinical trials can virtually assess the safety and efficacy of therapies using human-based modelling and simulation. These technologies can provide mechanistic explanations for clinically observed pathological behaviour. Designing virtual cohorts for in silico trials requires exploiting clinical data to capture the physiological variability in the human population.
View Article and Find Full Text PDF