Publications by authors named "K Budidha"

Various studies have looked at the efficiency of artificial vessel and tissue networks in the study of photoplethysmography (PPG) in an effort to better understand the origin of various morphological features present in the signal. Whilst there are all reasonable attempts made to replicate geometrical features such as vessel depth, vessel wall thickness and diameter etc., not many studies have attempted to replicate the mechanical properties such as vessel elasticity and tissue compressibility.

View Article and Find Full Text PDF

The photoplethysmogram (PPG) signal is widely used in pulse oximeters and smartwatches. A fundamental step in analysing the PPG is the detection of heartbeats. Several PPG beat detection algorithms have been proposed, although it is not clear which performs best.

View Article and Find Full Text PDF

With the continued development and rapid growth of wearable technologies, PPG has become increasingly common in everyday consumer devices such as smartphones and watches. There is, however, minimal knowledge on the effect of the contact pressure exerted by the sensor device on the PPG signal and how it might affect its morphology and the parameters being calculated. This study explores a controlled in vitro study to investigate the effect of continually applied contact pressure on PPG signals (signal-to-noise ratio (SNR) and 17 morphological PPG features) from an artificial tissue-vessel phantom across a range of simulated blood pressure values.

View Article and Find Full Text PDF

Elevated lactate levels in blood (hyperlactatemia) are indications of hypoperfusion or sepsis in critical care conditions. Quantification and monitoring of this important marker is performed using intermittent blood sampling, which fails to provide a complete scenario to aid clinicians in diagnosis. The feasibility of Near Infrared (NIR) Spectroscopy as an alternative to state-of-the-art techniques in critical care environments for non-invasive and continuous monitoring of lactate has previously been established.

View Article and Find Full Text PDF

Short-wave infrared (SWIR) spectroscopy has shown great promise in probing the composition of biological tissues. Currently there exists an enormous drive amongst researchers to design and develop SWIR-based optical sensors that can predict the concentration of various biomarkers non-invasively. However, there is limited knowledge regarding the interaction of SWIR light with vascular tissue, especially in terms of parameters like the optimal source-detector separation, light penetration depth, optical pathlength, etc.

View Article and Find Full Text PDF