Epiphytes on seagrass leaves can render parts of the leaf phyllosphere anoxic in darkness owing to leaf/epiphyte respiration and O diffusion constraints. In such anoxic microenvironments, anaerobic microbes can potentially produce phytotoxins and greenhouse gases, but the actual occurrence of such processes in seagrass epiphytic biofilms remain uncertain. We used microsensors to measure O, NO, NO and HS concentration gradients, as well as NO and O dynamics within epiphytic biofilms on seagrass (Zostera marina) leaves under changing environmental conditions.
View Article and Find Full Text PDFChemical dynamics in biological samples are seldom stand-alone processes but represent the outcome of complicated cascades of interlinked reaction chains. In order to understand these processes and how they correlate, it is important to monitor several parameters simultaneously at high spatial and temporal resolution. Hyperspectral imaging is a promising tool for this, as it provides broad-range spectral information in each pixel, enabling the use of multiple luminescent indicator dyes, while simultaneously providing information on sample structures and optical properties.
View Article and Find Full Text PDFUnlabelled: Seagrasses can enhance nutrient mobilization in their rhizosphere via complex interactions with sediment redox conditions and microbial populations. Yet, limited knowledge exists on how seagrass-derived rhizosphere dynamics affect nitrogen cycling. Using optode and gel-sampler-based chemical imaging, we show that radial O loss (ROL) from rhizomes and roots leads to the formation of redox gradients around below-ground tissues of seagrass (), which are co-localized with regions of high ammonium concentrations in the rhizosphere.
View Article and Find Full Text PDFAlthough nanoengineering of electrodes opens up the way to the development of solid oxide fuel cells (SOFCs) with improved performance, the practical implementation of such advances in cells suitable for widespread use remains a challenge. Here, the demonstration of large-area, commercially relevant SOFCs with two nanoengineered electrodes that display excellent performance is reported. The self-assembled nanocomposite LaSrCoO and CoO is strategically designed and deposited into the well-interconnected CeGdO backbone as a cathode to enable an ultra-large electrochemically active region.
View Article and Find Full Text PDF