Publications by authors named "K Brodaczewska"

Multiple sclerosis (MS) is a chronic central nervous system (CNS) disease with demyelinating inflammatory characteristics. It is the most common nontraumatic and disabling disease affecting young adults. The incidence and prevalence of MS have been increasing.

View Article and Find Full Text PDF

Sirtuin 7 (SIRT7), a member of the sirtuin family of NAD+-dependent deacetylases, plays a vital role in cancer, exhibiting context-dependent functions across various malignancies. Our study investigates the role of SIRT7 depletion in head and neck squamous cell carcinoma (HNSCC) progression. In vitro and 3D organotypic models demonstrated that SIRT7 knock-out attenuates cancer cell viability, proliferation, and motility as well as induces downregulation of migration- and epithelial-mesenchymal transition (EMT)-related gene expression.

View Article and Find Full Text PDF

Hypoxia, a condition of oxygen tension lower than physiological level, plays a crucial role in shaping the tumor microenvironment and modulates distinct cell populations activity. The tumor suppressor PTEN regulates angiogenesis, a process involving endothelial cells (ECs). Pathological in tumors, it is crucial for growth.

View Article and Find Full Text PDF

Background: PTEN is a tumor suppressor that is often mutated and nonfunctional in many types of cancer. The high heterogeneity of PTEN function between tumor types makes new Pten knockout models necessary to assess its impact on cancer progression and/or treatment outcomes.

Methods: We aimed to show the effect of CRISPR/Cas9-mediated Pten knockout on murine melanoma (B16 F10) and kidney cancer (Renca) cells.

View Article and Find Full Text PDF

Hypoxia, low, non-physiological oxygen tension is a key regulator of tumor microenvironment, determining the pathological tumor vascularization. Alleviation of hypoxia through vessel normalization may be a promising therapeutic approach. We aimed to assess the role of low oxygen tension in PTEN-related pathways and proangiogenic response, in vitro, in two different tumor cell lines, focusing on potential therapeutic targets for tumor vessel normalization.

View Article and Find Full Text PDF