Publications by authors named "K Bridge"

During recent decades, changes in lifestyle have led to widespread nutritional obesity and its related complications. Remodelling adipose tissue as a therapeutic goal for obesity and its complications has attracted much attention and continues to be actively explored. The endothelium lines all blood vessels and is close to all cells, including adipocytes.

View Article and Find Full Text PDF

The epigenetic landscape plays a critical role in cancer progression, yet its therapeutic potential remains underexplored. Glucocorticoids are essential components of treatments for lymphoid cancers, but resistance, driven in part by epigenetic changes at glucocorticoid-response elements, poses a major challenge to effective therapies. Here we show that glucocorticoid treatment induces distinct patterns of chromosomal organization in glucocorticoid-sensitive and resistant acute lymphoblastic leukemia xenograft models.

View Article and Find Full Text PDF

Objectives: The insulin receptor (IR) and insulin like growth factor-1 receptor (IGF-1R) are heterodimers consisting of two extracellular α-subunits and two transmembrane β -subunits. Insulin αβ and insulin like growth factor-1 αβ hemi-receptors can heterodimerize to form hybrids composed of one IR αβ and one IGF-1R αβ. The function of hybrids in the endothelium is unclear.

View Article and Find Full Text PDF

Pericytes are vascular mural cells that support the microvasculature; their dysfunction contributes to diabetic retinopathy and has been linked to obesity in humans. To explore the role of pericyte insulin signalling on systemic metabolism we utilised male mice from our previously described PIR (PIRKO) mouse line which has insulin receptor (Insr) knockout in PDGFRβ-expressing cells. These animals exhibit systemic insulin resistance from as early as 8-weeks of age, despite no change in body weight or activity level, and show altered body composition and hepatosteatosis.

View Article and Find Full Text PDF
Article Synopsis
  • * Mice with both insulin resistance (IR+/-) and ApoE deficiency (ApoE-/-) showed more atherosclerosis after a high-cholesterol diet compared to ApoE-/- controls, indicating that insulin resistance may accelerate atherosclerosis.
  • * Investigating the role of Nox2, a source of superoxide linked to diabetes-related atherosclerosis, showed that genetically inhibiting Nox2 worsened arterial wall damage, while pharmacological inhibition reduced atherosclerosis without damaging the artery.
View Article and Find Full Text PDF