The successes of nonlinear photonics and hybrid silicon photonics with a growing variety of functional materials entail ever-enlarging bandwidths. It is best exemplified by parametric comb frequency generation. Such operation challenges the dielectric channel waveguide as the basis for guidance, because of the adverse advent of higher order modes at short wavelengths.
View Article and Find Full Text PDFOxide-free bonding of a III-V active stack emitting at 1300-1600 nm to a silicon-on-insulator wafer offers the capability to electrically inject lasers from the silicon side. However, a typical 500-nm-thick silicon layer notably attracts the fundamental guided mode of the silicon + III-V stack, a detrimental feature compared to established III-V Separate-Confinement Heterostructure (SCH) stacks. We experimentally probe with photoluminescence as an internal light source the guiding behavior for oxide-free bonding to a nanopatterned silicon wafer that acts as a low-index barrier.
View Article and Find Full Text PDFIntegrating different steps on a chip for cell manipulations and sample preparation is of foremost importance to fully take advantage of microfluidic possibilities, and therefore make tests faster, cheaper and more accurate. We demonstrated particle manipulation in an integrated microfluidic device by applying hydrodynamic, electroosmotic (EO), electrophoretic (EP), and dielectrophoretic (DEP) forces. The process involves generation of fluid flow by pressure difference, particle trapping by DEP force, and particle redirect by EO and EP forces.
View Article and Find Full Text PDF2D imaging of biochips is particularly interesting for multiplex biosensing. Resonant properties allow label-free detection using the change of refractive index at the chip surface. We demonstrate a new principle of Scanning Of Resonance on Chip by Imaging (SORCI) based on spatial profiles of nanopatterns of resonant waveguide gratings (RWGs) and its embodiment in a fluidic chip for real-time biological studies.
View Article and Find Full Text PDFBiomed Opt Express
October 2012
We demonstrate a solution to make resonant-waveguide-grating sensing both robust and simpler to optically assess, in the spirit of biochips. Instead of varying wavelength or angle to track the resonant condition, the grating itself has a step-wise variation with typically few tens of neighboring "micropads." An image capture with incoherent monochromatic light delivers spatial intensity sequences from these micropads.
View Article and Find Full Text PDF