We study the conductivity, density of states, and magnetic correlations of a two-dimensional, two-band fermion Hubbard model using determinant quantum Monte Carlo (DQMC) simulations. We show that an orbitally selective Mott transition (OSMT) occurs in which the more weakly interacting band can be metallic despite complete localization of the strongly interacting band. The DQMC method allows us to test the validity of the use of a momentum independent self-energy which has been a central approximation in previous OSMT studies.
View Article and Find Full Text PDFWe study the transitions from band insulator to metal to Mott insulator in the ionic Hubbard model on a two-dimensional square lattice using determinant quantum Monte Carlo. Evaluation of the temperature dependence of the conductivity demonstrates that the metallic region extends for a finite range of interaction values. The Mott phase at strong coupling is accompanied by antiferromagnetic order.
View Article and Find Full Text PDF