Chromatin is a dynamic polymer in constant motion. These motions are heterogeneous between cells and within individual cell nuclei and are profoundly altered in response to DNA damage. The shifts in chromatin motions following genomic insults depend on the temporal and physical scales considered.
View Article and Find Full Text PDFIn yeasts and higher eukaryotes, chromatin motions may be tuned to genomic functions, with transcriptional activation and the DNA damage response both leading to profound changes in chromatin dynamics. The RAD51 recombinase is a key mediator of chromatin mobility following DNA damage. As functions of RAD51 beyond DNA repair are being discovered, we asked whether RAD51 modulates chromatin dynamics in the absence of DNA damage and found that inhibition or depletion of RAD51 alters chromatin motions in undamaged cells.
View Article and Find Full Text PDFSignificance: Three-dimensional (3D) imaging and object tracking is critical for medical and biological research and can be achieved by multifocal imaging with diffractive optical elements (DOEs) converting depth ( ) information into a modification of the two-dimensional image. Physical insight into DOE designs will spur this expanding field.
Aim: To precisely track microscopic fluorescent objects in biological systems in 3D with a simple low-cost DOE system.
Proc Natl Acad Sci U S A
July 2022
The study of radiation effects on biological tissues is a diverse field of research with direct applications to improve human health, in particular in the contexts of radiation therapy and space exploration. Understanding the DNA damage response following radiation exposure, which is a key determinant for mutagenesis, requires reproducible methods for delivering known doses of ionizing radiation (IR) in a controlled environment. Multiple IR sources, including research X-ray and gamma-ray irradiators are routinely used in basic and translational research with cell and animal models.
View Article and Find Full Text PDF