Publications by authors named "K Blow"

Understanding the mechanisms underpinning heterogeneous ice nucleation in the presence of ionic inclusions is important for fields such as cryopreservation and for improved models of climate and weather prediction. Feldspar and ammonium are both present in significant quantities in the atmosphere, and experimental evidence has shown that feldspar can nucleate ice from ammonium-containing solutions at temperatures warmer than water alone. In recent work, Whale hypothesised that this increase in nucleation temperature is due to an increase in configurational entropy when an ammonium ion is included in the ice hydrogen bond network (T.

View Article and Find Full Text PDF

Forward flux sampling (FFS) is a path sampling technique widely used in computer simulations of crystal nucleation from the melt. In such studies, the order parameter underpinning the progress of the FFS algorithm is often the size of the largest crystalline nucleus. In this work, we investigate the effects of two computational aspects of FFS simulations, using the prototypical Lennard-Jones liquid as our computational test bed.

View Article and Find Full Text PDF

The formation of crystals has proven to be one of the most challenging phase transformations to quantitatively model-let alone to actually understand-be it by means of the latest experimental technique or the full arsenal of enhanced sampling approaches at our disposal. One of the most crucial quantities involved with the crystallization process is the nucleation rate, a single elusive number that is supposed to quantify the average probability for a nucleus of critical size to occur within a certain volume and time span. A substantial amount of effort has been devoted to attempt a connection between the crystal nucleation rates computed by means of atomistic simulations and their experimentally measured counterparts.

View Article and Find Full Text PDF