Purpose: To demonstrate that high-seed, ultra-high-resolution spectral-domain optical coherence tomography (SD-OCT) technology can image in vivo fine morphological features in the healthy and pathological human limbus.
Methods: A compact, fiberoptic SD-OCT system was developed for imaging the human limbus. It combines ∼1.
Potentially blinding corneal diseases alter the morphology of the human cornea. At the early stages of disease development, these changes occur at the cellular level. The ability to visualize and quantify such changes can lead to early diagnostics of corneal pathologies, which is pivotal for the long-term preservation of vision.
View Article and Find Full Text PDFThe trade-off between transverse resolution and depth-of-focus (DOF) typical for optical coherence tomography (OCT) systems based on conventional optics, prevents "single-shot" acquisition of volumetric OCT images with sustained high transverse resolution over the entire imaging depth. Computational approaches for correcting defocus and higher order aberrations in OCT images developed in the past require highly stable phase data, which poses a significant technological challenge. Here, we present an alternative computational approach to sharpening OCT images and reducing speckle noise, based on intensity OCT data.
View Article and Find Full Text PDFDynamic optical coherence tomography (dOCT) utilizes time-dependent signal intensity fluctuations to enhance contrast in OCT images and indirectly probe physiological processes in cells. Majority of the dOCT studies published so far are based on acquisition of 2D images (B-scans or C-scans) by utilizing point-scanning Fourier domain (spectral or swept-source) OCT or full-field OCT respectively, primarily due to limitations in the image acquisition rate. Here we introduce a novel, high-speed spectral domain line-field dOCT (SD-LF-dOCT) system and image acquisition protocols designed for fast, volumetric dOCT imaging of biological tissues.
View Article and Find Full Text PDFDigital correction of optical aberrations allows for high-resolution imaging across the full depth range in optical coherence tomography (OCT). Many digital aberration correction (DAC) methods have been proposed in the past to evaluate and correct monochromatic error in OCT images. However, other factors that deteriorate the image quality have not been fully investigated.
View Article and Find Full Text PDF