Publications by authors named "K Billiar"

Mechanical properties of engineered connective tissues are critical for their success, yet modern sensors that measure physical qualities of tissues for quality control are invasive and destructive. The goal of this work was to develop a noncontact, nondestructive method to measure mechanical attributes of engineered skin substitutes during production without disturbing the sterile culture packaging. We optimized a digital holographic vibrometry (DHV) system to measure the mechanical behavior of Apligraf living cellular skin substitute through the clear packaging in multiple conditions: resting on solid agar as when the tissue is shipped, on liquid media in which it is grown, and freely suspended in air as occurs when the media is removed for feeding.

View Article and Find Full Text PDF

Multicellular spheroids embedded in 3D hydrogels are prominent in vitro models for 3D cell invasion. Yet, quantification methods for spheroid cell invasion that are high-throughput, objective and accessible are still lacking. Variations in spheroid sizes and the shapes of the cells within render it difficult to objectively assess invasion extent.

View Article and Find Full Text PDF

Multicellular spheroids embedded in 3D hydrogels are prominent models for 3D cell invasion. Yet, quantification methods for spheroid cell invasion that are high throughput, objective and accessible are still lacking. Variations in spheroid sizes and the shapes of the cells within render it difficult to objectively assess invasion extent.

View Article and Find Full Text PDF

Functional regeneration of anisotropically aligned tissues such as ligaments, microvascular networks, myocardium, or skeletal muscle requires a temporal and spatial series of biochemical and biophysical cues to direct cell functions that promote native tissue regeneration. When these cues are lost during traumatic injuries such as volumetric muscle loss (VML), scar formation occurs, limiting the regenerative capacity of the tissue. Currently, autologous tissue transfer is the gold standard for treating injuries such as VML but can result in adverse outcomes including graft failure, donor site morbidity, and excessive scarring.

View Article and Find Full Text PDF
Article Synopsis
  • Calcific aortic valve disease (CAVD) is a prevalent heart valve condition in older populations, with two main pathways: osteogenic and dystrophic; the latter is more common.
  • The study aims to develop a new 3D dystrophic calcification model that reflects cell interactions better than existing 2D models and shows that programmed cell death (apoptosis) is crucial for calcification.
  • By using porcine valvular interstitial cell spheroids, researchers found that inhibiting apoptosis reduced calcification, and the addition of antioxidants (like ascorbic acid) further decreased calcification, indicating the importance of extracellular matrix production and oxidative stress in this process.
View Article and Find Full Text PDF