Elevated concentrations of pharmaceutically active compounds (PhACs) in the water bodies are posing a serious threat to the aquatic microbiota and other organisms. In this context, anaerobic ammonium oxidizing (anammox) bacteria carry a great potential to degrade PhACs through their innate metabolic pathways. This study investigates the influence of short-term exposure to lower and higher concentrations (0.
View Article and Find Full Text PDFCurrently, there is uncertainty about emissions of pharmaceuticals into larger closed ecosystems that are at risk such as the Baltic Sea. There is an increasing need for selecting the right strategies on advanced wastewater treatment. This study analysed 35 pharmaceuticals and iodinated X-ray contrast media in effluents from 82 Wastewater Treatment Plants (WWTPs) across Denmark, Estonia, Finland, Germany, Latvia, Lithuania, Poland and Sweden.
View Article and Find Full Text PDFMicropollutants are increasingly prevalent in the aquatic environment. A major part of these originates from wastewater treatment plants since traditional treatment technologies do not remove micropollutants sufficiently. Moving bed biofilm reactors (MBBRs), however, have been shown to aid in micropollutant removal when applied to conventional wastewater treatment as a polishing step.
View Article and Find Full Text PDFFeast-famine (FF) regimes improved the removal of recalcitrant pharmaceuticals in moving bed biofilm reactors (MBBRs), but the optimal FF cycle remained unresolved. The effects of FF cycle time on the removal of bulk substrates (organic carbon and nitrogen) and trace pharmaceuticals by MBBR are systematically evaluated in this study. The feast to famine ratio was fixed to 1:2 to keep the same loading rate, but the time for the FF cycles varied from 18 h to 288 h.
View Article and Find Full Text PDFCitalopram (CIT) is one of the most consumed antidepressants and frequently detected in aquatic environments worldwide. Conventional wastewater treatment cannot remove this neuronal active pharmaceutical efficiently. Past studies showed that moving bed biofilm reactors (MBBRs) can degrade CIT but the exact transformation pathways and toxicity reduction remained unclear.
View Article and Find Full Text PDF