Ultrashort laser pulses allow for in-volume processing of glass through non-linear absorption. This results in permanent material changes, largely independent of the processed glass, and it is of particular relevance for cleaving applications. In this paper, a laser with a wavelength of 1030 nm, pulse duration of 19 ps, repetition rate of 10 kHz, and burst regime consisting of either four or eight pulses, with an intra-burst pulse separation of 12.
View Article and Find Full Text PDFUltrashort laser pulses allow for the in-volume processing of glass through non-linear absorption, resulting in permanent material changes and the generation of internal stress. Across the manifold potential applications of this technology, process optimization requires a detailed understanding of the laser-matter interaction. Of particular relevance are the deposition of energy inside the material and the subsequent relaxation processes.
View Article and Find Full Text PDFWe demonstrate time-resolved tomography with 200 fs resolution for the three-dimensional analysis of the non-linear dynamics of ultrafast laser-matter interaction inside the volume of transparent materials. We reconstruct as an example the three-dimensional spatial distribution of the transient extinction coefficient induced by focusing higher-order Bessel-Gaussian-beams into Gorilla glass. This approach can be employed to gaseous, liquid and transparent solid state matter which interact with laser light.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2013
Objective and rater independent analysis of movement impairment is one of the most challenging tasks in medical engineering. Especially assessment of motor symptoms defines the clinical diagnosis in Parkinson's disease (PD). A sensor-based system to measure the movement of the upper and lower extremities would therefore complement the clinical evaluation of PD.
View Article and Find Full Text PDFPharmaceutical drugs and compounds used for consumer products may bear the risk of unexpected immuno-toxicological side effects, such as sensitization, allergy, anaphylaxis or immunogenicity. Modern biopharmaceuticals with high potency and target specificity, like antibodies and cytokines need to be tested for their therapeutical doses, their exposition regimens and their immune functionality prior to first-in-man applications. For the latter, existing in vitro tests and animal models do not sufficiently reflect the complexity and specificity of the human immune system.
View Article and Find Full Text PDF