Publications by authors named "K Beltz"

Activation of the NLRP3 inflammasome in response to danger signals is a key innate immune mechanism and results in the production of the pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) as well as pyroptotic cell death. Aberrant NLRP3 activation has been linked to many acute and chronic conditions ranging from atherosclerosis to Alzheimer's disease and cancer, and based on the clinical success of IL-1-targeting therapies, NLRP3 has emerged as an attractive therapeutic target. Herein we describe our discovery, characterization, and structure-based optimization of a pyridazine-based series of NLRP3 inhibitors initiating from an high-throughput screening campaign.

View Article and Find Full Text PDF

NLRP3 is a molecular sensor recognizing a wide range of danger signals. Its activation leads to the assembly of an inflammasome that allows for activation of caspase-1 and subsequent maturation of IL-1β and IL-18, as well as cleavage of Gasdermin-d and pyroptotic cell death. The NLRP3 inflammasome has been implicated in a plethora of diseases including gout, type 2 diabetes, atherosclerosis, Alzheimer's disease, and cancer.

View Article and Find Full Text PDF

The JAK kinases JAK1, JAK2, JAK3, and TYK2 play key roles in cytokine signaling. Activation of the JAK/STAT pathways is linked to many diseases involving the immune system, including atopic dermatitis. As systemic JAK inhibitor pharmacology is associated with side effects, topical administration to the skin has been considered to locally restrict the site of action.

View Article and Find Full Text PDF

After identification of lead compound , 5-amino-1,4-oxazine BACE1 inhibitors were optimized in order to improve potency, brain penetration, and metabolic stability. Insertion of a methyl and a trifluoromethyl group at the 6-position of the 5-amino-1,4-oxazine led to (), an inhibitor with a p of 7.1, a very low P-glycoprotein efflux ratio, and excellent pharmacological profile, enabling high central nervous system penetration and exposure.

View Article and Find Full Text PDF

The paracaspase MALT1 has gained increasing interest as a target for the treatment of subsets of lymphomas as well as autoimmune diseases, and there is a need for suitable compounds to explore the therapeutic potential of this target. Here, we report the optimization of the potency of pyrazolopyrimidines, a class of highly selective allosteric MALT1 inhibitors. High doses of the initial lead compound led to tumor stasis in an activated B-cell-like (ABC) diffuse large B-cell lymphoma (DLBCL) xenograft model, but this compound suffered from a short half-life and suboptimal potency in whole blood.

View Article and Find Full Text PDF