Publications by authors named "K Beloy"

We demonstrate subrecoil Sisyphus cooling using the long-lived ^{3}P_{0} clock state in alkaline-earth-like ytterbium. A 1388-nm optical standing wave nearly resonant with the ^{3}P_{0}→^{3}D_{1} transition creates a spatially periodic light shift of the ^{3}P_{0} clock state. Following excitation on the ultranarrow clock transition, we observe Sisyphus cooling in this potential, as the light shift is correlated with excitation to ^{3}D_{1} and subsequent spontaneous decay to the ^{1}S_{0} ground state.

View Article and Find Full Text PDF

We implement coherent delocalization as a tool for improving the two primary metrics of atomic clock performance: systematic uncertainty and instability. By decreasing atomic density with coherent delocalization, we suppress cold-collision shifts and two-body losses. Atom loss attributed to Landau-Zener tunneling in the ground lattice band would compromise coherent delocalization at low trap depths for our ^{171}Yb atoms; hence, we implement for the first time delocalization in excited lattice bands.

View Article and Find Full Text PDF

We examine the effect of a parasitic rf magnetic field, attributed to ion trapping, on the highly anticipated nuclear clock based on ^{229}Th^{3+} [C. J. Campbell et al.

View Article and Find Full Text PDF

Laser cooling is a key ingredient for quantum control of atomic systems in a variety of settings. In divalent atoms, two-stage Doppler cooling is typically used to bring atoms to the μK regime. Here, we implement a pulsed radial cooling scheme using the ultranarrow ^{1}S_{0}-^{3}P_{0} clock transition in ytterbium to realize subrecoil temperatures, down to tens of nK.

View Article and Find Full Text PDF

We propose a high-performance atomic clock based on the 1.81 PHz transition between the ground and first-excited state of doubly ionized lead. Utilizing an even isotope of lead, both clock states have I=J=F=0, where I, J, and F are the conventional quantum numbers specifying nuclear, electronic, and total angular momentum, respectively.

View Article and Find Full Text PDF