Publications by authors named "K Bagschik"

The PERCIVAL detector is a CMOS imager designed for the soft X-ray regime at photon sources. Although still in its final development phase, it has recently seen its first user experiments: ptychography at a free-electron laser, holographic imaging at a storage ring and preliminary tests on X-ray photon correlation spectroscopy. The detector performed remarkably well in terms of spatial resolution achievable in the sample plane, owing to its small pixel size, large active area and very large dynamic range; but also in terms of its frame rate, which is significantly faster than traditional CCDs.

View Article and Find Full Text PDF
Article Synopsis
  • PETRA III at DESY is a top-notch synchrotron radiation source, delivering powerful X-rays for a variety of scientific experiments across many fields.
  • It currently operates 25 specialized beamlines and has a storage-ring energy of 6 GeV.
  • The planned PETRA IV upgrade will increase brightness significantly, making it an advanced tool for studying biological, chemical, and physical processes, addressing major global challenges.
View Article and Find Full Text PDF

In this paper the back-side-illuminated Percival 2-Megapixel (P2M) detector is presented, along with its characterization by means of optical and X-ray photons. For the first time, the response of the system to soft X-rays (250 eV to 1 keV) is presented. The main performance parameters of the first detector are measured, assessing the capabilities in terms of noise, dynamic range and single-photon discrimination capability.

View Article and Find Full Text PDF
Article Synopsis
  • Topological states of matter are intriguing due to their unique physics and stability, but creating these states quickly is challenging.
  • Researchers demonstrated the rapid emergence of a topological phase with multiple magnetic skyrmions within picoseconds, using real-time soft X-ray scattering after activating with infrared laser.
  • A transient topological fluctuation state, influenced by a specific magnetic field, helps lower the energy barrier for this rapid formation, offering insights into topological transitions and potential for ultrafast switching in various materials.
View Article and Find Full Text PDF

Direct 2D spatial-coherence measurements are increasingly gaining importance at synchrotron beamlines, especially due to present and future upgrades of synchrotron facilities to diffraction-limited storage rings. We present a method to determine the 2D spatial coherence of synchrotron radiation in a direct and particularly simple way by using the Fourier-analysis method in conjunction with curved gratings. Direct photon-beam monitoring provided by a curved grating circumvents the otherwise necessary separate determination of the illuminating intensity distribution required for the Fourier-analysis method.

View Article and Find Full Text PDF