Publications by authors named "K Bagga"

Several challenging biological sensing concepts have been realized using electrolyte-gated reduced graphene oxide field effect transistors (rGO-FETs). In this work, we demonstrate the interest of rGO-FET for the sensing of human papillomavirus (HPV), one of the most common sexually transmitted viruses and a necessary factor for cervical carcinogenesis. The highly sensitive and selective detection of the HPV-16 E7 protein relies on the attractive semiconducting characteristics of pyrene-modified rGO functionalized with RNA aptamer Sc5-c3.

View Article and Find Full Text PDF

Background And Objectives: During the in vitro storage of red blood cells (RBCs), unfavourable changes (storage lesions) cause a rapid consumption of intracellular diphosphoglycerate. The latter deregulates the oxygen-haemoglobin binding potential, subsequently increasing oxygen saturation (SO ) and membrane degradation, transforming RBCs from biconcave discs to rigid spherical bodies (spheroechinocytes). Current laboratory techniques invasively extract RBC samples to assess the quality of red cell concentrate (RCC) units.

View Article and Find Full Text PDF

Nanoalloys and nanocomposites are widely studied classes of nanomaterials within the context of biological systems. They are of immense interest because of the possibility of tuning the optical, magnetic, electronic and chemical properties through particle composition and internal architecture. In principle these properties can therefore be optimized for application in biological detections such as of DNA sequences, bacteria, viruses, antibodies, antigens, and cancer cells.

View Article and Find Full Text PDF

The success of any implant, dental or orthopaedic, is driven by the interaction of implant material with the surrounding tissue. In this context, the nature of the implant surface plays a direct role in determining the long term stability as physico-chemical properties of the surface affect cellular attachment, expression of proteins, and finally osseointegration. Thus to enhance the degree of integration of the implant into the host tissue, various surface modification techniques are employed.

View Article and Find Full Text PDF

High-quality carbon nanoparticles with controlled viscosity and high aqueous stability were prepared by liquid-phase laser ablation of a graphite target in deionized water. The size distribution was found to vary from 5nm to 50nm with mean size of 18nm, in the absence of any reducing chemical reagents. Efficient generation of short chain polyynes was recorded for high laser repetition rates.

View Article and Find Full Text PDF