Publications by authors named "K B Snyder"

Introduction: On January 2, 2020, the FDA announced a policy focused in part on prioritizing enforcement of flavored (other than tobacco- or menthol-flavored) cartridge-based electronic nicotine delivery systems (ENDS) without premarket authorization.

Methods: We used a query to identify Reddit conversations relevant to the policy from January 2 to May 6, 2020. Our sample included 576 posts (46 posts and 530 accompanying comments).

View Article and Find Full Text PDF

Background: Early literature on the Woven EndoBridge (WEB) device reported 80-90% adequate aneurysm occlusion but low complete occlusion (40-55%). It is uncertain whether residual or recurrent aneurysms require re-treatment to prevent future rupture.

Objective: To systematically review the literature to meta-analyze occlusion and complication rates after re-treatment of these aneurysms.

View Article and Find Full Text PDF

Hemophagocytic lymphohistiocytosis (HLH) is a rare but aggressive and potentially lethal hyperinflammatory syndrome characterized by pathologic immune activation and excessive production of proinflammatory cytokines leading to tissue damage and multisystem organ failure. There is an urgent need for the discovery of novel targets and development of therapeutic strategies to treat this rare but deadly syndrome. Protein Arginine Methyltransferase 5 (PRMT5) mediates T cell-based inflammatory responses, making it a potential actionable target for the treatment of HLH.

View Article and Find Full Text PDF

Objective: The pulvinar nucleus of the thalamus has extensive cortical connections with the temporal, parietal, and occipital lobes. Deep brain stimulation (DBS) targeting the pulvinar nucleus, therefore, carries the potential for therapeutic benefit in patients with drug-resistant posterior quadrant epilepsy (PQE) and neocortical temporal lobe epilepsy (TLE). Here, we present a single-center experience of patients managed via bilateral DBS of the pulvinar nucleus.

View Article and Find Full Text PDF

This study evaluates the efficacy of deep learning models in identifying infarct tissue on computed tomography perfusion (CTP) scans from patients with acute ischemic stroke due to large vessel occlusion, specifically addressing the potential influence of varying noise reduction techniques implemented by different vendors. We analyzed CTP scans from 60 patients who underwent mechanical thrombectomy achieving a modified thrombolysis in cerebral infarction (mTICI) score of 2c or 3, ensuring minimal changes in the infarct core between the initial CTP and follow-up MR imaging. Noise reduction techniques, including principal component analysis (PCA), wavelet, non-local means (NLM), and a no denoising approach, were employed to create hemodynamic parameter maps.

View Article and Find Full Text PDF