Publications by authors named "K B Sippy"

The well-known interferon-inducer tilorone was found to possess potent affinity for the agonist site of the α7 neuronal nicotinic receptor (K(i)=56 nM). SAR investigations determined that both basic sidechains are essential for potent activity, however active monosubstituted derivatives can also be prepared if the flexible sidechains are replaced with conformationally rigidified cyclic amines. Analogs in which the fluorenone core is replaced with either dibenzothiophene-5,5-dioxide or xanthenone also retain potent activity.

View Article and Find Full Text PDF

Several N-pyridin-3-yl spirobicyclic diamines, designed as conformationally restricted analogs of tebanicline (ABT-594), were synthesized as novel ligands for nicotinic acetylcholine receptors (nAChR). The spirocyclic compounds exhibited weaker binding affinity, than other constrained analogs in accord with a pharmacophore model. Nevertheless, some (1a, 1b) possessed (partial) agonist potencies comparable to nicotine at the alpha4beta2 subtype, but with greatly improved selectivity relative to the alpha3beta4* nAChR.

View Article and Find Full Text PDF

A series of novel, potent neuronal nicotinic acetylcholine receptor (nAChR) ligands derived from 3,6-diazabicyclo[3.2.0]heptane have been synthesized and evaluated for binding affinity and agonist activity at the alpha4beta2 nAChR subtype.

View Article and Find Full Text PDF

In search of a uroselective alpha1A subtype selective antagonist, a novel series of 6-OMe hexahydrobenz[e]isoindoles attached to a bicyclic heterocyclic moiety via a two-carbon linker was synthesized. It was found that in contrast to the previously described series of tricyclic heterocycles,(1) this bicyclic series has very specific requirements for the heterocyclic attachments. The most important structural features contributing to the alpha1A/alpha1B selectivity of these compounds were identified.

View Article and Find Full Text PDF

The synthesis and in vitro characterization of A-119637 and A-123189, two novel, selective and potent alpha1D antagonists, are described.

View Article and Find Full Text PDF