Biochem Biophys Res Commun
February 2008
Within the first 24h of hormonally stimulated adipocyte differentiation, murine 3T3-L1 preadipocytes undergo a mitotic expansion phase prior to terminal differentiation. During this time, the cell cycle regulatory proteins, p130 and p107 undergo dramatic differential expression and the transient increase in expression of p107 appears to be required for terminal differentiation. Recently, human adipose-derived human stem cells (hASC) of mesenchymal origin have been used as a model of human adipocyte differentiation and we sought to determine if differentiating hASC undergo clonal expansion and if the regulated expression of p130/p107 was similar to that observed during 3T3-L1 adipogenesis.
View Article and Find Full Text PDFObjectives: In some patients with gastroesophageal reflux disease (GERD), the reflux-damaged esophageal squamous epithelium heals through the process of intestinal metaplasia (resulting in Barrett's esophagus) rather than through the regeneration of more squamous cells. We hypothesized that squamous epithelium in Barrett's esophagus might have abnormalities in activation of the extracellular-regulated kinases 1 and 2 (ERK1/2) signaling pathway that may facilitate esophageal repair through metaplasia in response to acid-induced injury.
Methods: Endoscopic biopsies were taken from distal esophageal squamous mucosa in patients who had GERD with and without Barrett's esophagus and in controls, before and after esophageal perfusion with 0.
Am J Physiol Gastrointest Liver Physiol
October 2004
Cyclooxygenase-2 (COX-2) has been linked to neoplastic progression in Barrett's esophagus. Acid exposure has been shown both to activate the MAPK pathways and to increase COX-2 protein expression in Barrett's metaplasia, but it is not known whether these effects are interrelated. We hypothesized that acid-induced activation of the MAPK pathways mediates an increase in COX-2 expression in Barrett's esophagus, and we tested this hypothesis in a Barrett's-associated adenocarcinoma cell line (SEG-1).
View Article and Find Full Text PDFBackground & Aims: To explore mechanisms whereby acid reflux might contribute to carcinogenesis in Barrett's esophagus (BE) we studied: (1) the effects of acid on the mitogen-activated protein kinase (MAPK) pathways, cell proliferation, and apoptosis in a Barrett's adenocarcinoma cell line (SEG-1); and (2) the ability of acid to activate the MAPK pathways in vivo in patients with BE.
Methods: SEG-1 cells were exposed to acidic media for 3 minutes, and the activities of 3 MAPKs (ERK, p38, and JNK) were determined. Proliferation was assessed using flow cytometry; cell growth and apoptosis were assessed using cell counts and an apoptosis ELISA assay.
Introduction: Burn surgery is complicated by blood loss. The tumescent technique of subdermal injection of epinephrine has been utilized to decrease intraoperative blood loss. We hypothesized that this would safely decrease blood loss during burn surgery.
View Article and Find Full Text PDF