Publications by authors named "K B Neeves"

Rapid restoration of blood flow is critical in treating acute ischemic stroke. Current fibrinolytic therapies using tissue plasminogen activator (tPA) are limited by low recanalization rates and risks of off-target bleeding. Here, we present a strategy using tPA immobilized on micrometer-scale beads to enhance local plasmin generation.

View Article and Find Full Text PDF

Background: In healthy individuals, plasma levels of clotting proteins naturally vary within a range of 50% to 150% of their mean values. We do not know how these variations modify thrombin generation.

Objectives: To assess the impact of protein level variations on simulated thrombin generation in normal and factor (F)VIII-, FIX-, or FXI-deficient blood.

View Article and Find Full Text PDF

Background: Inhibition of tissue factor pathway inhibitor (TFPI) is an emerging therapeutic strategy for treatment of hemophilia. Concizumab is a monoclonal antibody that binds TFPI and blocks its inhibition of factor (F)Xa thereby extending the initiation of coagulation and compensating for lack of FVIII or FIX.

Objectives: The objective of this in vitro study was to evaluate how concizumab affects clot formation in hemophilia A under flow.

View Article and Find Full Text PDF

For targeted transport in the body, biomedical microbots (μbots) must move effectively in three-dimensional (3D) microenvironments. Swimming μbots translate via asymmetric or screw-like motions while rolling ones use friction with available surfaces to generate propulsive forces. We have previously shown that planar rotating magnetic fields assemble μm-scale superparamagnetic beads into circular μbots that roll along surfaces.

View Article and Find Full Text PDF

Tissue plasminogen activator (tPA) is the only FDA-approved treatment for ischemic stroke but carries significant risks, including major hemorrhage. Additional options are needed, especially in small vessel thrombi which account for ~25% of ischemic strokes. We have previously shown that tPA-functionalized colloidal microparticles can be assembled into microwheels (µwheels) and manipulated under the control of applied magnetic fields to enable rapid thrombolysis of fibrin gels in microfluidic models of thrombosis.

View Article and Find Full Text PDF