Introduction: The acceleration of biological aging is a risk factor for Alzheimer's disease (AD). Here, we performed weighted gene co-expression network analysis (WGCNA) to identify modules and dysregulated genesinvolved in biological aging in AD.
Methods: We performed WGCNA to identify modules associated with biological clocks and hub genes of the module with the highest module significance.
Background: Identifying biomarkers associated with Alzheimer's disease (AD) progression may enable patient enrichment and improve clinical trial designs. Epigenome-wide association studies have revealed correlations between DNA methylation at cytosine-phosphate-guanine (CpG) sites and AD pathology and diagnosis. Here, we report relationships between peripheral blood DNA methylation profiles measured using Infinium® MethylationEPIC BeadChip and AD progression in participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort.
View Article and Find Full Text PDFThe lack of samples for generating standardized DNA datasets for setting up a sequencing pipeline or benchmarking the performance of different algorithms limits the implementation and uptake of cancer genomics. Here, we describe reference call sets obtained from paired tumor-normal genomic DNA (gDNA) samples derived from a breast cancer cell line-which is highly heterogeneous, with an aneuploid genome, and enriched in somatic alterations-and a matched lymphoblastoid cell line. We partially validated both somatic mutations and germline variants in these call sets via whole-exome sequencing (WES) with different sequencing platforms and targeted sequencing with >2,000-fold coverage, spanning 82% of genomic regions with high confidence.
View Article and Find Full Text PDFClinical applications of precision oncology require accurate tests that can distinguish true cancer-specific mutations from errors introduced at each step of next-generation sequencing (NGS). To date, no bulk sequencing study has addressed the effects of cross-site reproducibility, nor the biological, technical and computational factors that influence variant identification. Here we report a systematic interrogation of somatic mutations in paired tumor-normal cell lines to identify factors affecting detection reproducibility and accuracy at six different centers.
View Article and Find Full Text PDF