Purpose: To quantify the deformation behavior of the diseased femoropopliteal segment and assess the change to deformation behavior due to various stent placements.
Methods: The length and curvature changes of 6 femoropopliteal segments (the right and left superficial femoral and popliteal arteries) from 3 cadavers were measured in 3-dimensional space based on rotational angiography image data in straight leg and flexed hip/knee (50°/90°) positions before and after placement of nitinol stents of varying type (EverFlex, Misago, and BioMimics 3D) and length (60, 100, and 200 mm) in different locations along the arteries. Three-dimensional centerline data were extracted for the measurements.
Intimal hyperplasia (IH) is a leading cause of obstruction of vascular interventions, including arterial stents, bypass grafts and arteriovenous grafts and fistulae. Proposals to account for arterial stent-associated IH include wall damage, low wall shear stress (WSS), disturbed flow and, although not widely recognized, wall hypoxia. The common non-planarity of arterial geometry and flow, led us to develop a bare-metal, nitinol, self-expanding stent with three-dimensional helical-centreline geometry.
View Article and Find Full Text PDFMesenchymal stem cell (MSC) differentiation can be influenced by biophysical stimuli imparted by the host scaffold. Yet, causal relationships linking scaffold strain magnitudes and inlet fluid velocities to specific cell responses are thus far underdeveloped. This investigation attempted to simulate cell responses in a collagen-glycosaminoglycan (CG) scaffold within a bioreactor.
View Article and Find Full Text PDFThe objective of this work is to develop understanding of the local fluid dynamic mechanisms that underpin gas exchange in high-frequency oscillatory ventilation (HFOV). The flow field during HFOV was investigated experimentally using particle image velocimetry in idealized and realistic models of a single bifurcation. Results show that inspiratory and expiratory fluid streams coexist in the airway at flow reversal, and mixing between them is enhanced by secondary flow and by vortices associated with shear layers.
View Article and Find Full Text PDF