Publications by authors named "K B Arvidson"

In 2013, the Global Coalition for Regulatory Science Research (GCRSR) was established with members from over ten countries (www.gcrsr.net).

View Article and Find Full Text PDF

The COSMOS Database (DB) was originally established to provide reliable data for cosmetics-related chemicals within the COSMOS Project funded as part of the SEURAT-1 Research Initiative. The database has subsequently been maintained and developed further into COSMOS Next Generation (NG), a combination of database and tools, essential components of a knowledge base. COSMOS DB provided a cosmetics inventory as well as other regulatory inventories, accompanied by assessment results and and toxicity data.

View Article and Find Full Text PDF

A new dataset of cosmetics-related chemicals for the Threshold of Toxicological Concern (TTC) approach has been compiled, comprising 552 chemicals with 219, 40, and 293 chemicals in Cramer Classes I, II, and III, respectively. Data were integrated and curated to create a database of No-/Lowest-Observed-Adverse-Effect Level (NOAEL/LOAEL) values, from which the final COSMOS TTC dataset was developed. Criteria for study inclusion and NOAEL decisions were defined, and rigorous quality control was performed for study details and assignment of Cramer classes.

View Article and Find Full Text PDF

Chemotypes are a new approach for representing molecules, chemical substructures and patterns, reaction rules, and reactions. Chemotypes are capable of integrating types of information beyond what is possible using current representation methods (e.g.

View Article and Find Full Text PDF

Despite wide-spread consensus on the need to transform toxicology and risk assessment in order to keep pace with technological and computational changes that have revolutionized the life sciences, there remains much work to be done to achieve the vision of toxicology based on a mechanistic foundation. To this end, a workshop was organized to explore one key aspect of this transformation - the development of Pathways of Toxicity as a key tool for hazard identification based on systems biology. Several issues were discussed in depth in the workshop: The first was the challenge of formally defining the concept of a Pathway of Toxicity (PoT), as distinct from, but complementary to, other toxicological pathway concepts such as mode of action (MoA).

View Article and Find Full Text PDF