The core component of the actin cytoskeleton is the globular protein G-actin, which reversibly polymerizes into filaments (F-actin). Budding yeast possesses a single actin that shares 87%-89% sequence identity with vertebrate actin isoforms. Previous structural studies indicate very close overlap of main-chain backbones.
View Article and Find Full Text PDFAsymmetric cell division in Saccharomyces cerevisiae involves class V myosin-dependent transport of organelles along the polarised actin cytoskeleton to the emerging bud. Vac17 is the vacuole/lysosome-specific myosin receptor. Its timely breakdown terminates transport and results in the proper positioning of vacuoles in the bud.
View Article and Find Full Text PDFMembrane-bound organelles play important, frequently essential, roles in cellular metabolism in eukaryotes. Hence, cells have evolved molecular mechanisms to closely monitor organelle dynamics and maintenance. The actin cytoskeleton plays a vital role in organelle transport and positioning across all eukaryotes.
View Article and Find Full Text PDFAutophagy is a key process in eukaryotes to maintain cellular homeostasis by delivering cellular components to lysosomes/vacuoles for degradation and reuse of the resulting metabolites. Membrane rearrangements and trafficking events are mediated by the core machinery of autophagy-related (Atg) proteins, which carry out a variety of functions. How Atg9, a lipid scramblase and the only conserved transmembrane protein within this core Atg machinery, is trafficked during autophagy remained largely unclear.
View Article and Find Full Text PDF