Excitation of the renal sympathetic nervous system is important for the development of ischaemic acute kidney injury (AKI) in rats. We reported that intravenous treatment with GABA has preventive effects against ischaemia/reperfusion (I/R)-induced renal dysfunction with histological damage in rats; however, the mechanisms underlying these effects on renal injury remain unknown. Thus, the aim of the present study was to clarify how GABA mechanistically affects ischaemic AKI in rats.
View Article and Find Full Text PDFIncreasing evidence supports the idea that chronic hypoperfusion in the brain is responsible for the pathogenesis underling Alzheimer's disease (AD). Obesity at midlife is associated with the risk of cognitive loss and AD at later life. Obesity decreases cerebral blood flow that is associated with decreased synthesis and actions of nitric oxide (NO) derived from the endothelium and also increases the production of oxidative stress.
View Article and Find Full Text PDFTime-dependent changes in the renal sympathetic nerve activity (RSNA) in the progression of chronic kidney disease (CKD) have not been investigated, despite the fact that renal sympathetic nervous system is augmented in the condition of CKD. In the present study, we examined time-dependent changes in RSNA and renal venous norepinephrine concentrations for 12 weeks using 5 of 6 nephrectomized CKD rats. Both RSNA and norepinephrine concentrations were increased during the early phase in the progression of CKD.
View Article and Find Full Text PDF