Tuberculosis caused by the obligate intracellular pathogen, , is one among the prime causes of death worldwide. An urgent remedy against tuberculosis is of paramount importance in the current scenario. However, the complex nature of this appalling disease contributes to the limitations of existing medications.
View Article and Find Full Text PDFSupercapacitors (SCs) are well recognized for their excessive power output and cycling stability, but they often suffer from limited energy density. A promising solution to this challenge is the hybrid supercapattery (HSC) concept, which integrates two different electrodes with disparate charge-storage systems to provide energy and power. In this work, transition-metal phosphides (TMPs), specifically a Cu-doped cobalt phosphide wrapped with an N-doped porous carbon network (CCP-NPC), were used as positive electrode materials in HSCs.
View Article and Find Full Text PDFThe innermost layer of the vessel wall is constantly subjected to recurring and relenting mechanical forces by virtue of their direct contact with blood flow. Endothelial cells of the vessel are exposed to distension, pressure, and shear stress; adaptation to these hemodynamic forces requires significant remodeling of the cytoskeleton which includes changes in actin, intermediate filaments, and microtubules. While much is known about the effect of shear stress on the endothelial actin cytoskeleton; the impact of hemodynamic forces on the microtubule network has not been investigated in depth.
View Article and Find Full Text PDF