Ceramic materials are potentially useful for dental applications because of their esthetic potential and biocompatibility. However, evidence of contact fatigue damage in ceramics raises considerable concern regarding its effect on the survival probability predicted for dental prostheses. To simulate intraoral conditions, Hertzian indentation loading with steel indenters was applied in this study to characterize the fatigue failure mechanisms of ceramic materials.
View Article and Find Full Text PDFObjectives: (1) To assess whether there is evidence of an association between the number of peri-implant tissue complications and patient characteristics such as gender, diabetes status, smoking status, and bite force; (2) To assess whether there is evidence of an association between the number of peri-implant tissue complications and location of the implant, surgical technique used, bone graft status and sinus lift status.
Materials And Methods: This randomized, controlled clinical trial included a total of 176 implants (OsseoSpeed, DENTSPLY) in 67 participants with 88 fixed dental prostheses. Information was obtained from health histories, a baseline exam, surgical notes, and post-operative exams.
Objective: Fractures of posterior fixed dental all-ceramic prostheses can be caused by one or more factors including prosthesis design, flaw distribution, direction and magnitude of occlusal loading, nature of supporting infrastructure (tooth root/implant), and presence of adjacent teeth. This clinical study of implant-supported, all-ceramic fixed dental prostheses, determined the effects of (1) presence of a tooth distal to the most distal retainer; (2) prosthesis loading either along the non-load bearing or load bearing areas; (3) presence of excursive contacts or maximum intercuspation contacts in the prosthesis; and (4) magnitude of bite force on the occurrence of veneer ceramic fracture.
Methods: 89 implant-supported FDPs were randomized as either a three-unit posterior metal-ceramic (Au-Pd-Ag alloy and InLine POM, Ivoclar, Vivadent) FDP or a ceramic-ceramic (ZirCAD and ZirPress, Ivoclar, Vivadent) FDP.
Objective: This study was performed to evaluate the biocompatibility of nine types of pure metals using 36 experimental prosthetic titanium-based alloys containing 5, 10, 15, and 20wt% of each substituted metal.
Methods: The cell viabilities for pure metals on Ti alloys that contain these elements were compared with that of commercially pure (CP) Ti using the WST-1 test and agar overlay test.
Results: The ranking of pure metal cytotoxicity from most potent to least potent was: Co>Cu>In>Ag>Cr>Sn>Au>Pd>Pt>CP Ti.
Purpose: Occlusal reduction is considered a fundamental step for providing adequate and uniform space for the ceramic prosthesis; however, a flat occlusal surface is usually found. The prosthesis design influences the resistance to deformation and the stress state within the ceramic. This finite element (FE) study analyzes the influence of changing the substructure design on the stress distribution of a metal-ceramic crown in a premolar tooth with three types of occlusal reduction.
View Article and Find Full Text PDF