The black abalone, , is a large, long-lived marine mollusc that inhabits rocky intertidal habitats along the coast of California and Mexico. In 1985, populations were impacted by a bacterial disease known as withering syndrome (WS) that wiped out >90% of individuals, leading to the species' designation as critically endangered. Current conservation strategies include restoring diminished populations by translocating healthy individuals.
View Article and Find Full Text PDFCardiovascular therapeutic devices (CTDs) remain limited by thrombotic adverse events. Current antithrombotic agents limit thrombosis partially, often adding to bleeding. The Impella® blood pump utilizes heparin in 5% dextrose (D5W) as an internal purge to limit thrombosis.
View Article and Find Full Text PDFImplantable Cardiovascular Therapeutic Devices (CTD), while lifesaving, impart supraphysiologic shear stress to platelets, resulting in thrombotic and bleeding coagulopathy. We previously demonstrated that shear-mediated platelet dysfunction is associated with downregulation of platelet GPIb-IX-V and αIIbβ3 receptors via generation of Platelet-Derived MicroParticles (PDMPs). Here, we test the hypothesis that sheared PDMPs manifest phenotypical heterogeneity of morphology and receptor surface expression and modulate platelet hemostatic function.
View Article and Find Full Text PDFObjective: Implantable cardiovascular therapeutic devices (CTD) including stents, percutaneous heart valves and ventricular assist devices, while lifesaving, impart supraphysiologic shear stress to platelets resulting in thrombotic and bleeding device-related coagulopathy. We previously demonstrated that shear-mediated platelet dysfunction is associated with downregulation of platelet GPIb-IX-V and αIIbβ3 receptors via generation of platelet-derived microparticles (PDMPs). Here, we test the hypothesis that shear-generated PDMPs manifest phenotypical heterogeneity of their morphology and surface expression of platelet receptors, and modulate platelet hemostatic function.
View Article and Find Full Text PDFBackground: The Impella® microaxial blood pumps utilize purge fluid containing heparin to prevent biofouling of internal surfaces. Purge fluid interfaces with blood or blood components at two notable internal locations: (1) 5-8 μm radial gap ("Radial Gap" or "Gap 1") between the motor shaft and bearing, a site accessible by blood proteins or small molecules; and (2) 100 μm axial gap ("Axial Gap" or "Gap 2") between the impeller rotor and bearing, the site of mixing with larger circulating blood components. Despite its efficacy, heparin in the purge fluid complicates overall patient anticoagulation management.
View Article and Find Full Text PDF