Publications by authors named "K Alfthan"

Mesenchymal stem/stromal cells (MSCs) have the capacity to counteract excessive inflammatory responses. MSCs possess a range of immunomodulatory mechanisms, which can be deployed in response to signals in a particular environment and in concert with other immune cells. One immunosuppressive mechanism, not so well-known in MSCs, is mediated via adenosinergic pathway by ectonucleotidases CD73 and CD39.

View Article and Find Full Text PDF

Multipotent mesenchymal stem/stromal cells (MSCs) offer great promise for future regenerative and anti-inflammatory therapies. Panels of functional and phenotypical markers are currently used in characterization of different therapeutic stem cell populations from various sources. The i antigen (linear poly-N-acetyllactosamine) from the Ii blood group system has been suggested as a marker for MSCs derived from umbilical cord blood (UCB).

View Article and Find Full Text PDF
Article Synopsis
  • Lectins are proteins that bind to carbohydrates and are found in all living organisms, playing key roles like cell adhesion.
  • Based on studies of human embryonic stem cells, researchers explored lectins as new materials to support stem cell culture.
  • The Erythrina cristagalli lectin (ECA) showed promise in enhancing the growth and efficiency of human stem cells while maintaining their ability to differentiate, suggesting lectins could be useful for stem cell research and applications.
View Article and Find Full Text PDF

Mutations in the NF2 tumor suppressor gene encoding merlin induce the development of tumors of the nervous system. Merlin is highly homologous to the ERM (ezrin-radixin-moesin) family of membrane/cytoskeleton linker proteins. However, the mechanism for the tumor suppressing activity of merlin is not well understood.

View Article and Find Full Text PDF

Intrabody technology was applied to characterize the function and intracellular localization of a highly conserved Saccharomyces cerevisiae Sem1 protein. DSS1, the mammalian homologue of Sem1p, is functionally conserved between yeast and mammalian cells, and in mammalian cells physically interacts with the strong tumour supressor BRCA2. Yeast and the generated intrabodies are thus expected to offer a useful system for studies on Sem1p/DSS1 function.

View Article and Find Full Text PDF