Publications by authors named "K A Vliet"

Myelination is a key biological process wherein glial cells such as oligodendrocytes wrap myelin around neuronal axons, forming an insulative sheath that accelerates signal propagation down the axon. A major obstacle to understanding myelination is the challenge of visualizing and reproducibly quantifying this inherently three-dimensional process in vitro. To this end, we previously developed artificial axons (AAs), a biocompatible platform consisting of 3D-printed hydrogel-based axon mimics designed to more closely recapitulate the micrometer-scale diameter and sub-kilopascal mechanical stiffness of biological axons.

View Article and Find Full Text PDF

Mesenchymal stem and stromal cells (MSCs) hold potential to treat a broad range of clinical indications, but clinical translation has been limited to date due in part to challenges with batch-to-batch reproducibility of potential critical quality attributes (pCQAs) that can predict potency/efficacy. Here, we designed and implemented a microcarrier-microbioreactor approach to cell therapy manufacturing, specific to anchorage-dependent cells such as MSCs. We sought to assess whether increased control of the biochemical and biophysical environment had the potential to create product with consistent presentation and elevated expression of pCQAs relative to established manufacturing approaches in tissue culture polystyrene (TCPS) flasks.

View Article and Find Full Text PDF

: To determine which salivary proteins adhere onto sport mouthguards, and to evaluate the effectiveness of different cleaning strategies in removing deposited protein. : Fifteen healthy volunteers used a mouthguard for 1 h. The deposited salivary proteins were analyzed using gel electrophoresis and Western blotting techniques and compared with the protein composition of unstimulated saliva.

View Article and Find Full Text PDF

Cell therapies have gained prominence as a promising therapeutic modality for treating a range of diseases. Despite the recent clinical successes of cell therapy products, very few formal training programs exist for cell therapy manufacturing. To meet the demand for a well-trained workforce, we assembled a team of university researchers and industry professionals to develop an online course on the principles and practice of cell therapy manufacturing.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) are promising therapeutic agents for cartilage regeneration, including the potential of cells to promote chondrogenesis in vivo. However, process development and regulatory approval of MSCs as cell therapy products benefit from facile in vitro approaches that can predict potency for a given production run. Current standard in vitro approaches include a 21 day 3D differentiation assay followed by quantification of cartilage matrix proteins.

View Article and Find Full Text PDF