Publications by authors named "K A Shipham"

Precursor cells have the capacity to repopulate the demyelinated brain, but the molecular mechanisms that facilitate their recruitment are largely unknown. The low-affinity neurotrophin receptor, p75(NTR), may be one of these regulators; however, its expression profile by oligodendroglia within the multiple sclerosis (MS) brain remains uncertain. We therefore assessed the expression profile of this receptor within 8 MS and 4 control brains.

View Article and Find Full Text PDF

The role of p75 neurotrophin receptor (p75NTR) in mediating cell death is now well characterized, however, it is only recently that details of the death signaling pathway have become clearer. This review focuses on the importance of the juxtamembrane Chopper domain region of p75NTR in this process. Evidence supporting the involvement of K+ efflux, the apoptosome (caspase-9, apoptosis activating factor-1, APAF-1, and Bcl-xL), caspase-3, c-jun kinase, and p53 in the p75NTR cell death pathway is discussed and regulatory roles for the p75NTR ectodomain and death domain are proposed.

View Article and Find Full Text PDF

Schwann cell death is a developmentally regulated phenomenon and is also induced after peripheral nerve axotomy in neonatal rodents. In this study, we explored whether ligand-induced activation of the low-affinity neurotrophin receptor (p75(NTR)) is responsible for inducing Schwann cell death in vivo. Administration of exogenous nerve growth factor (NGF) to the axotomized nerve site in wild-type animals resulted in a 2.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a disabling inflammatory demyelinating disease of the central nervous system (CNS) that primarily affects young adults. Available therapies can inhibit the inflammatory component of MS but do not suppress progressive clinical disability. An alternative approach would be to inhibit mechanisms that drive the neuropathology of MS, which often includes the death of oligodendrocytes, the cells responsible for myelinating the CNS.

View Article and Find Full Text PDF

The low affinity neurotrophin receptor (p75(NTR)) is implicated in promoting oligodendrocytic death after nerve growth factor (NGF) stimulation but NGF and neurotrophin-3 (NT-3) can also potentiate oligodendrocytic survival. We show regional variability in p75(NTR) expression within the central nervous system of the postnatal rat; expression is readily detectable by immunohistochemistry upon a subset of CNPase-positive oligodendroglia in optic nerve but not within the cerebrum. Nevertheless, oligodendroglia isolated from the cerebrum and cultured for 16 hours express p75(NTR) as well as the trkC but not the TrkA gene.

View Article and Find Full Text PDF