Recent studies have demonstrated that the mechanisms through which biopolymers like RNA interconvert between multiple folded structures are critical for their cellular functions. A major obstacle to elucidating these mechanisms is the lack of experimental approaches that can resolve these interconversions between functionally relevant biomolecular structures. Here, we dissect the complete set of structural rearrangements executed by an ultra-stable RNA, the UUCG stem-loop, at the single-molecule level using a nano-electronic device with microsecond time resolution.
View Article and Find Full Text PDFDiscrete amplitude levels in ordered, time-domain data often represent different underlying latent states of the system that is being interrogated. Analysis and feature extraction from these data sets generally require considering the order of each individual point; this approach cannot take advantage of contemporary general-purpose graphics processing units (gpGPU) and single-instruction multiple-data (SIMD) instruction set architectures. Two sources of such data from single-molecule biological measurements are nanopores and single-molecule field effect transistor (smFET) nanotube devices; both generate streams of time-ordered current or voltage data, typically sampled near 1 MS/s, with run times of minutes, yielding terabyte-scale datasets.
View Article and Find Full Text PDF