Publications by authors named "K A Schuchard"

Article Synopsis
  • The study focuses on annular melt blowing, a process for creating fibers by using high-velocity air to shape molten polymer into thin jets.
  • A new multiphase computational fluid dynamics (CFD) model was developed to explore the interactions between polymer and air and how they affect fiber characteristics, particularly whipping instability and fiber diameter.
  • Results showed that differences in velocity between the polymer and air influenced instability, while fiber diameter was mainly affected by polymer throughput and air velocity; the model predictions matched well with experimental data, especially at lower air velocities.
View Article and Find Full Text PDF

Although nebulizers have been developed for delivery of small molecules in human patients, no tunable device has been purpose-built for targeted delivery of modern large molecule and temperature-sensitive therapeutics to mice. Mice are used most of all species in biomedical research and have the highest number of induced models for human-relevant diseases and transgene models. Regulatory approval of large molecule therapeutics, including antibody therapies and modified RNA highlight the need for quantifiable dose delivery in mice to model human delivery, proof-of-concept studies, efficacy, and dose-response.

View Article and Find Full Text PDF

There is a need for the development of effective treatments for focal articular cartilage injuries. We previously developed a multiphasic 3D-bioplotted osteochondral scaffold design that can drive site-specific tissue formation when seeded with adipose-derived stem cells (ASC). The objective of this study was to evaluate this scaffold in a large animal model.

View Article and Find Full Text PDF

Recapitulation of multiscale structure-function properties of cells, cell-secreted extracellular matrix, and 3D architecture of natural tissues is central to engineering biomimetic tissue substitutes. Toward achieving biomimicry, a variety of biofabrication processes have been developed, which can be broadly classified into five categories-fiber and fabric formation, additive manufacturing, surface modification, remote fields, and other notable processes-each with specific advantages and limitations. The majority of biofabrication literature has focused on using a single process at a time, which often limits the range of tissues that could be created with relevant features that span nano to macro scales.

View Article and Find Full Text PDF

Engineered scaffolds used to regenerate mammalian tissues should recapitulate the underlying fibrous architecture of native tissue to achieve comparable function. Current fibrous scaffold fabrication processes, such as electrospinning and three-dimensional (3D) printing, possess application-specific advantages, but they are limited either by achievable fiber sizes and pore resolution, processing efficiency, or architectural control in three dimensions. As such, a gap exists in efficiently producing clinically relevant, anatomically sized scaffolds comprising fibers in the 1-100 μm range that are highly organized.

View Article and Find Full Text PDF