This Review explores the rapidly evolving field of bioengineered vasculature, a key area of focus in tissue engineering and regenerative medicine. The broad relevance of this topic is attributed to its impacts on a wide range of biological processes, enabling studies in tissue development, fundamental biology and drug discovery, and the applications in tissue engineering and regenerative medicine. We outline the design criteria for bioengineered vasculature and the methodologies for constructing these systems by self-assembly and in microfluidics, organs-on-a-chip and macroscale tubular systems that often rely on biofabrication approaches such as 3D printing.
View Article and Find Full Text PDFGeometric and structural integrity often deteriorate in 3D printed cell-laden constructs over time due to cellular compaction and hydrogel shrinkage. This study introduces a new approach that synergizes the advantages of cell compatibility of biological hydrogels and mechanical stability of elastomeric polymers for structure fidelity maintenance upon stereolithography and extrusion 3D printing. Enabling this advance is the composite bioink, formulated by integrating elastomeric microparticles from poly(octamethylene maleate (anhydride) citrate) (POMaC) into biologically derived hydrogels (fibrin, gelatin methacryloyl (GelMA), and alginate).
View Article and Find Full Text PDFAcne vulgaris, a prevalent dermatological disorder, frequently affects individuals' self-perception and general psychosocial functioning. The growing demand for home-based light therapy devices prompted a systematic review to assess the efficacy of visible light in acne treatment. Overall, 35 studies were included, representing 1185 cases of acne vulgaris (mean age: 23.
View Article and Find Full Text PDFThe successful translation of organ-on-a-chip devices requires the development of an automated workflow for device fabrication, which is challenged by the need for precise deposition of multiple classes of materials in micro-meter scaled configurations. Many current heart-on-a-chip devices are produced manually, requiring the expertise and dexterity of skilled operators. Here, we devised an automated and scalable fabrication method to engineer a Biowire II multiwell platform to generate human iPSC-derived cardiac tissues.
View Article and Find Full Text PDF