Comprehensive two-dimensional gas chromatography (GC×GC) is becoming increasingly more common for non-targeted characterization of complex volatile mixtures. The information gained with higher peak capacity and sensitivity provides additional sample composition information when one-dimensional GC is not adequate. GC×GC generates complex multivariate data sets when using non-targeted analysis to discover analytes.
View Article and Find Full Text PDFEthnopharmacological Relevance: Kava (Piper methysticum G. Forst) is a plant grown in the Pacific that is used in traditional medicines. The roots are macerated and powdered for consumption as a beverage in social settings as well as in ceremonies.
View Article and Find Full Text PDFFast diagnostic results using breath analysis are an anticipated possibility for disease diagnosis or general health screenings. Tests that do not require sending specimens to medical laboratories possess capabilities to speed patient diagnosis and protect both patient and healthcare staff from unnecessary prolonged exposure. The objective of this work was to develop testing procedures on an initial healthy subject cohort in Hawaii to act as a range-finding pilot study for characterizing the baseline of exhaled breath prior to further research.
View Article and Find Full Text PDFThere has been an influx of technology for comprehensive two-dimensional gas chromatography analyses in recent years, calling for development of guided workflows and rigorous reporting of processes. This research focuses on the processing method for data collected on a dual channel detection system using flame ionization detection (FID) and quadrupole mass spectrometry (qMS) for the analysis of volatile organic compounds (VOCs). The samples analyzed were kava (), which has a rich VOC profile that benefits substantially from a multidimensional approach due to enhanced peak capacity.
View Article and Find Full Text PDF