Publications by authors named "K A Pendrak"

Abnormal intracellular calcium (Ca(2+)) handling can trigger endoplasmic reticulum (ER) stress, leading to activation of the unfolded protein response (UPR) in an attempt to prevent cell death. Mechanical unloading with a left ventricular assist device (LVAD) relieves pressure-volume overload and promotes reverse remodeling of the failing myocardium. We hypothesized that mechanical unloading would alter the UPR in patients with advanced heart failure (HF).

View Article and Find Full Text PDF

Increased utrophin expression is known to reduce pathology in dystrophin-deficient skeletal muscles. Transgenic over-expression of PGC-1α has been shown to increase levels of utrophin mRNA and improve the histology of mdx muscles. Other reports have shown that PGC-1α signaling can lead to increased oxidative capacity and a fast to slow fiber type shift.

View Article and Find Full Text PDF

Bowman-Birk inhibitor concentrate (BBIC), a serine protease inhibitor, has been shown to diminish disuse atrophy of skeletal muscle. Duchenne muscular dystrophy (DMD) results from a loss of dystrophin protein and involves an ongoing inflammatory response, with matrix remodeling and activation of transforming growth factor (TGF)-β(1) leading to tissue fibrosis. Inflammatory-mediated increases in extracellular protease activity may drive much of this pathological tissue remodeling.

View Article and Find Full Text PDF

Calpain activation has been implicated in the disease pathology of Duchenne muscular dystrophy. Inhibition of calpain has been proposed as a promising therapeutic target, which could lessen the protein degradation and prevent progressive fibrosis. At the same time, there are conflicting reports as to whether elevation of calpastatin, an endogenous calpain inhibitor, alters pathology.

View Article and Find Full Text PDF

Modulation of transforming growth factor-β (TGF-β) signaling to promote muscle growth holds tremendous promise for the muscular dystrophies and other disorders involving the loss of functional muscle mass. Previous studies have focused on the TGF-β family member myostatin and demonstrated that inhibition of myostatin leads to muscle growth in normal and dystrophic mice. We describe a unique method of systemic inhibition of activin IIB receptor signaling via adeno-associated virus (AAV)-mediated gene transfer of a soluble form of the extracellular domain of the activin IIB receptor to the liver.

View Article and Find Full Text PDF