Publications by authors named "K A O'Shaughnessy"

In degraded urban habitats, nature-based solutions aim to enhance ecosystem functioning and service provision. Bivalves are increasingly reintroduced to urban environments to enhance water quality through biofiltration, yet their long-term sustainability remains uncertain. Following the restoration of the disused South Docks in Liverpool in the 1980s, natural colonization of mussels rapidly improved dock-basin water quality and supported diverse taxa, including other filter feeders.

View Article and Find Full Text PDF

Known as "forever chemicals", per- and polyfluoroalkyl substances (PFAS) are synthetic compounds used in consumer goods but pose significant public health concerns, including disruption of the thyroid system. As thyroid hormones (THs) are required for normal brain development, PFAS may also be developmental neurotoxicants. However, this is not well understood.

View Article and Find Full Text PDF
Article Synopsis
  • Missions into Deep Space this decade are concerning due to potential health risks from microgravity and galactic cosmic radiation, especially for kidneys.
  • Researchers used various biological and clinical analyses on samples from spaceflight-exposed mice, humans, and simulated environments.
  • Key findings reveal that spaceflight causes kidney-related issues like increased risk of kidney stones, changes in nephron structure, and damage from radiation exposure.
View Article and Find Full Text PDF

Aims: Vascular aging is characterized by vessel stiffening, with increased deposition of extracellular matrix (ECM) proteins including collagens. Oxidative DNA damage occurs in vascular aging, but how it regulates ECM proteins and vascular stiffening is unknown. We sought to determine the relationship between oxidative DNA damage and ECM regulatory proteins in vascular aging.

View Article and Find Full Text PDF

The environmental contaminant perchlorate impairs the synthesis of thyroid hormones by reducing iodine uptake into the thyroid gland. Despite this known action, moderate doses of perchlorate do not significantly alter serum thyroid hormone in rat pups born to exposed dams. We examined perchlorate dosimetry and responsivity of the thyroid gland and brain in offspring following maternal exposure to perchlorate.

View Article and Find Full Text PDF