Small noncoding RNAs (sncRNAs) are implicated in age-associated pathologies, including sarcopenia and insulin resistance (IR). As potential circulating biomarkers, most studies have focussed on microRNAs (miRNAs), one class of sncRNA. This study characterized the wider circulating sncRNA transcriptome of older individuals and associations with sarcopenia and IR.
View Article and Find Full Text PDFGestational diabetes (GDM) changes the maternal metabolic and uterine environment, thus increasing the risk of short- and long-term adverse outcomes for both mother and child. Children of mothers who have GDM during their pregnancy are more likely to develop Type 2 Diabetes (T2D), early-onset cardiovascular disease and GDM when they themselves become pregnant, perpetuating a multigenerational increased risk of metabolic disease. The negative effect of GDM is exacerbated by maternal obesity, which induces a greater derangement of fetal adipogenesis and growth.
View Article and Find Full Text PDFBackground: While ageing is associated with increased insulin resistance (IR), the molecular mechanisms underlying increased IR in the muscle, the primary organ for glucose clearance, have yet to be elucidated in older individuals. As epigenetic processes are suggested to contribute to the development of ageing-associated diseases, we investigated whether differential DNA methylation was associated with IR in human primary muscle stem cells (myoblasts) from community-dwelling older individuals.
Methods: We measured DNA methylation (Infinium HumanMethylationEPIC BeadChip) in myoblast cultures from vastus lateralis biopsies (119 males/females, mean age 78.