Drinking water utilities are vulnerable to both human-caused and natural disasters that can impact the system infrastructure and the delivery of potable water to consumers. Analyzing system performance and resilience can help utilities identify areas of high risk or concern, understand the impacts on consumers, and evaluate response actions during disasters. In this case study, the Water Network Tool for Resilience (WNTR) was used to investigate the performance and resilience of a drinking water system in New York during increased demands due to firefighting, pipe damage, and loss of the source water emergencies.
View Article and Find Full Text PDFJ Water Resour Plan Manag
September 2022
The two Category-5 hurricanes that impacted the United States Virgin Islands in 2017 exposed critical infrastructure vulnerabilities that must be addressed. While the drinking water utility has first-hand knowledge about how the hurricanes affected their systems, the use of modeling and simulation tools can provide additional insight to aid investment planning and preparedness. This paper provides a case study on resilience analysis for the island's potable water systems subject to long term power outages.
View Article and Find Full Text PDFMany countries that had early access to COVID-19 vaccines implemented vaccination strategies that prioritized health care workers and the elderly. As barriers to access eased, vaccine prioritization strategies have been relaxed. However, these strategies are still an important tool for decision makers to manage new variants, plan for future booster shots, or stage mass vaccinations.
View Article and Find Full Text PDFJ Water Resour Plan Manag
September 2021
Drinking water systems commonly use manual or grab sampling to monitor water quality, identify or confirm issues, and verify that corrective or emergency response actions have been effective. In this paper, the effectiveness of regulatory sampling locations for emergency response is explored. An optimization formulation based on the literature was used to identify manual sampling locations to maximize overall nodal coverage of the system.
View Article and Find Full Text PDFDrinking water utilities rely on samples collected from the distribution system to provide assurance of water quality. If a water contamination incident is suspected, samples can be used to determine the source and extent of contamination. By determining the extent of contamination, the percentage of the population exposed to contamination, or areas of the system unaffected can be identified.
View Article and Find Full Text PDF