Publications by authors named "K A Kellersberger"

Therapeutic options for the treatment of glioblastoma remain inadequate despite concerted research efforts in drug development. Therapeutic failure can result from poor permeability of the blood-brain barrier, heterogeneous drug distribution, and development of resistance. Elucidation of relationships among such parameters could enable the development of predictive models of drug response in patients and inform drug development.

View Article and Find Full Text PDF

Mammalian tissues rely on a variety of nutrients to support their physiological functions. It is known that altered metabolism is involved in the pathogenesis of cancer, but which nutrients support the inappropriate growth of intact malignant tumors is incompletely understood. Amino acids are essential nutrients for many cancer cells that can be obtained through the scavenging and catabolism of extracellular protein via macropinocytosis.

View Article and Find Full Text PDF

We have developed a method to identify previously undetected histidine and aspartic acid phosphorylations in a human prostate cancer progression model. A phosphoproteome of our cell line model is presented, with correlation of modified protein expression between the three states of cancer: non-tumorigenic, tumorigenic, and metastatic cells. With the described interaction proteins potentially phosphorylated by NM23-H1, cellular responses to motility and conformational change stimuli would be achievable.

View Article and Find Full Text PDF

This paper describes the application of nanoparticle bombardment with time-of-flight secondary ion mass spectrometry (NP-ToF-SIMS) for the analysis of native biological surfaces for the case of sagittal sections of mammalian brain tissue. The use of high energy, single nanoparticle impacts (e.g.

View Article and Find Full Text PDF

Drug transit through the blood-brain barrier (BBB) is essential for therapeutic responses in malignant glioma. Conventional methods for assessment of BBB penetrance require synthesis of isotopically labeled drug derivatives. Here, we report a new methodology using matrix assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) to visualize drug penetration in brain tissue without molecular labeling.

View Article and Find Full Text PDF