Methionine dependence of malignant cells is one of the cancer hallmarks. It is well described that methionine deprivation drives cancer cells death, both in vitro and in vivo. Methionine gamma-lyase (MGL) isolated from different species or obtained by genetic engineering can be used for effective methionine depletion.
View Article and Find Full Text PDFSp1 is a transcription factor of the Sp/KLF family that binds to GC-rich motifs in regulatory regions of genes. Sp1 is involved in the regulation of cell proliferation, apoptosis and differentiation, and angiogenesis. A high level of SP1 expression, as well as its aberrant transcriptional activity due to post-translational modifications, is found in cells in oncological diseases, such as lung, breast, pancreatic, thyroid, gastric cancer, and glioma; congenital heart disease, as well as neurodegenerative disorders, including Huntington's and Parkinson's diseases.
View Article and Find Full Text PDFIncreased MAPK signaling is a hallmark of various cancers and is a central regulator of cell survival. Direct ERK1/2 inhibition is considered a promising approach to avoid ERK1/2 reactivation caused by upstream kinases BRAF, MEK1/2, and KRAS, as well as by receptor tyrosine kinase inhibitors, but the dynamics and selectivity of ERK1/2 inhibitors are much less studied compared with BRAF or MEK inhibitors. Using ERK1/2 and downstream kinase ELK1 reporter cell lines of lung cancer (H1299; NRAS), colon cancer (HCT-116; KRAS), neuroblastoma (SH-SY5Y), and leukemia (U937), we examined the relationship between ERK inhibition and drug-induced toxicity for five ERK inhibitors: SCH772984, ravoxertinib, LY3214996, ulixertinib, and VX-11e, as well as one MEK inhibitor, PD0325901.
View Article and Find Full Text PDFThe acquired resistance of neuroblastoma (NB) and leukemia cells to anticancer therapy remains the major challenge in the treatment of patients with these diseases. Although targeted therapy, such as receptor tyrosine kinase (RTK) inhibitors, has been introduced into clinical practice, its efficacy is limited to patients harboring mutant kinases. Through the analysis of transcriptomic data of 701 leukemia and NB patient samples and cell lines, we revealed that the expression of RTK, such as KIT, FLT3, AXL, FGFR3, and NTRK1, is linked with HDAC class I.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is a genetically heterogeneous group of oncological diseases of the hematopoietic system, which are extremely difficult to treat. The development of new targeted drugs (Hylteritinib, Venetoclax) significantly improved the survival of patients, but resistance, as well as cytotoxic anti-leukemia drugs, often occurs. The search for new molecular targets for the development of effective approaches for the treatment of AML is very urgent.
View Article and Find Full Text PDF