J Phys Condens Matter
July 2021
To describe kinetic phenomena in disordered conductors, various acts of scattering of electrons can be often considered as independent, that is captured by the Boltzmann equation. However, in some regimes, especially, in a magnetic field, it becomes necessary to take into account the correlations between different scattering events of electrons on defects at different times in the past. Such memory effects can have a profound impact on the resistivity of 2D semiconductor systems, resulting in giant negative magnetoresistance and microwave-induced resistance oscillations phenomena.
View Article and Find Full Text PDFThe topological Hall effect is used extensively to study chiral spin textures in various materials. However, the factors controlling its magnitude in technologically-relevant thin films remain uncertain. Using variable-temperature magnetotransport and real-space magnetic imaging in a series of Ir/Fe/Co/Pt heterostructures, here we report that the chiral spin fluctuations at the phase boundary between isolated skyrmions and a disordered skyrmion lattice result in a power-law enhancement of the topological Hall resistivity by up to three orders of magnitude.
View Article and Find Full Text PDFJ Phys Condens Matter
July 2020
We discuss in detail the electron scattering pattern on skyrmion-like magnetic textures in two-dimensional geometry. The special attention is focused on analyzing the scattering asymmetry, which is a precursor of the topological Hall effect. We present analytical results valid in the limiting regimes of strong and weak coupling, we analyze analytically the conditions when the transverse response acquires a quantized character determined by the topological charge of a magnetic texture, we also derive the numerical scheme that gives access to the exact solution of the scattering problem.
View Article and Find Full Text PDFIn this work we manifest that an electrostatic disorder in conducting systems with broken time reversal symmetry universally leads to a chiral ordering of the electron gas giving rise to skyrmion-like textures in spatial distribution of the electron spin density. We describe a microscopic mechanism underlying the formation of the equilibrium chiral spin textures in two-dimensional systems with spin-orbit interaction and exchange spin splitting. We have obtained analytical expressions for spin-density response functions and have analyzed both local and non-local spin response to electrostatic perturbations for systems with parabolic-like and Dirac electron spectra.
View Article and Find Full Text PDF