Photodynamic therapy (PDT) has shown promise as an adjuvant treatment for malignant pleural mesothelioma when combined with surgical resection. Accurate light dosimetry is critical for treatment efficacy. This study presents an improved method for analyzing light fluence distribution in pleural PDT using a standardized anatomical coordinate system and advanced computational modeling.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) relies on the interactions between light, photosensitizers, and tissue oxygen to produce cytotoxic reactive oxygen species (ROS), primarily singlet oxygen (O) through Type II photochemical reactions, along with superoxide anion radicals (O), hydrogen peroxide (HO), and hydroxyl radicals (OH) through Type I mechanisms. Accurate dosimetry, accounting for all three components, is crucial for predicting and optimizing PDT outcomes. Conventional dosimetry tracks only light fluence rate and photosensitizer concentration, neglecting the role of tissue oxygenation.
View Article and Find Full Text PDFBackground And Purpose: The normal tissue sparing afforded by FLASH radiotherapy (RT) is being intensely investigated for potential clinical translation. Here, we studied the effects of FLASH proton RT (F-PRT) in the reirradiation setting, with or without hypofractionation. Chronic toxicities in three murine models of normal tissue toxicity including the intestine, skin, and bone were investigated.
View Article and Find Full Text PDFHead and neck cancer radiotherapy often damages salivary glands and oral mucosa, severely negatively impacting patients' quality of life. The ability of FLASH proton radiotherapy (F-PRT) to decrease normal tissue toxicity while maintaining tumor control compared with standard proton radiotherapy (S-PRT) has been previously demonstrated for several tissues. However, its potential in ameliorating radiation-induced salivary gland dysfunction and oral mucositis and controlling orthotopic head and neck tumor growth has not been reported.
View Article and Find Full Text PDFFLASH is an emerging treatment paradigm in radiotherapy (RT) that utilizes ultra-high dose rates (UHDR; >40 Gy)/s) of radiation delivery. Developing advances in technology support the delivery of UHDR using electron and proton systems, as well as some ion beam units (eg, carbon ions), while methods to achieve UHDR with photons are under investigation. The major advantage of FLASH RT is its ability to increase the therapeutic index for RT by shifting the dose response curve for normal tissue toxicity to higher doses.
View Article and Find Full Text PDF